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Abstract. The initial-boundary-value problem for the heat equation in the case of a toroidal surface with Dirichlet
boundary conditions is considered. This problem is reduced to a sequence of elleptic boundary-value problems by
a Laguerre transformation. The special integral representation leads to boundary-integral equations of the first kind
and the toroidal surface gives one-dimensional integral equations with a logarithmic singularity. The numerical
solution is realized by a trigonometric quadrature method in cases of open or closed smooth boundaries. The
results of some numerical experiments are presented.
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1. Introduction

During the last few years the integral-equation method has gained a dominant position in many
numerical methods for various boundary-value problems. The boundary-element method [1]
in particular is used very often. Here the advantages of integral equations and the finite-
element method are combined. At the same time it is interesting to use the integral-equation
method for problems with a parametric representation of the boundary. In this case we can
make a large number of analytical transformations and as a result the numerical solution is
simpler, with a higher order of convergence. One way of obtaining a numerical solution is to
apply the quadrature method for the ensuing integral equations. This approach was success-
fully used in [2–6] for various boundary-value problems in the plane case. Note that in [7] this
procedure is extended for boundary-value problems in R

3.
The integral-equation method can also be effectively used for non-stationary problems.

Various forms of this procedure can be applied directly by use of the time-boundary-integral
representation [8, 9] or after the semi-discretization of the non-stationary problem with respect
to the time variable [10, 11, 12].

In this paper we use a combination of the Laguerre transformation and the boundary-
integral equation method for the heat equation in the case of a toroidal boundary. First this
problem is considered in a three-dimensional spatial domain and for a special form of the
boundary. Additional assumptions for the boundary function give us the possibility to obtain
the corresponding integral equations on the curve in R

2. Then we can apply the corresponding
numerical methods for one-dimensional integral equations.

The outline of our paper is as follows. In Section 2 we reduce the Dirichlet initial-boundary-
value problem by a Laguerre transformation to a sequence of boundary-value problems for a
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Helmholtz equation with a purely imaginary number. Next we construct an integral approach
and arrive at sequences of boundary-integral equations of the first or the second kind. In
Section 3 we describe the numerical solution of the integral equations by a trigonometrical
quadrature method. Here distinguish the cases of a smooth open boundary and a smooth closed
boundary. Section 4 presents results of numerical experiments.

Before the realization of this plan we have to formulate our non-stationary problem. Let
D ⊂ R

3 be an unbounded domain such that its complement is bounded and simply connected
and assume that the boundary � of D is of class C2. We consider the initial-boundary-value
problem for the heat equation

1

c

∂u

∂t
= �u in D × (0,∞) (1.1)

with heat conduction coefficient c > 0. We are looking for a classical solution of (1.1) that is
twice continuously differentiable with respect to the space variable and continuously differ-
entiable with respect to the time variable on D × (0,∞) and satisfies the homogeneous initial
condition

u(x, 0) = 0, x ∈ D (1.2)

and the boundary condition

u = F on � × [0,∞), (1.3)

where F is a given sufficiently smooth function satisfying the compatibility condition

F(x, 0) = 0, x ∈ �.

At infinity we assume that

u(x, t) → 0, |x| → ∞, (1.4)

uniformly with respect to all directions x/|x| and all t ∈ [0,∞). The questions about the
existence and the uniqueness of a solution for this initial-boundary-value problem have been
dealt with (see [13, Chapter 3] and [14, Chapter 9]).

2. Semi-discretization and the integral-equation method

For the reduction of the dimension in the non-stationary problem (1.1)–(1.4) we propose
to use the Laguerre transformation with respect to the time variable. This transformation is
successfully used in cases of hyperbolic and parabolic problems [10, 11, 12]. Thus we look
for a solution of (1.1)–(1.4) in the form of a Fourier–Laguerre expansion in time

u(x, t) = κ

∞∑
n=0

un(x)Ln(κt), (2.1)

where

un(x) =
∫ ∞

0
e−κtLn(κt)u(x, t) dt, n = 0, 1, 2, . . . , (2.2)
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where Ln denotes the Laguerre polynomial of order n [15] and κ > 0 is a fixed parameter.
The formulas (2.1) and (2.2) are interpreted as inverse and direct Laguerre transformations for
the function u, respectively. Simple calculations give us the following result (for details see
[11]):

Theorem 2.1 The expansion (2.1) is the solution of (1.1)–(1.4) if and only if the coefficients
un solve the sequence of boundary-value problems

�un − γ 2un = β

n−1∑
m=0

um in D, (2.3)

un = fn on �, (2.4)

un(x) → 0, |x| → ∞, (2.5)

uniformly for all directions. Here fn are the Fourier–Laguerre coefficients of the function F ,
β = κ

c
and γ 2 = β.

Next we construct singular solutions �n of (2.3) that satisfy the relations

��n(x, y) − β

n∑
m=0

�m(x, y) = δ(|x − y|)

with the δ Dirac function. The functions �n can be found by reduction of (2.3) to ordinary
differential equations [11] or by applying the Laguerre transformation to the fundamental
solution of the heat equation in R

3 [12]. In both cases we have the following representation:

�n(x, y) = e−γ |x−y|

|x − y|
n∑

m=0

an,m|x − y|m, (2.6)

where the coefficients are recursively defined by

an,0 = 1, an,n = − β

2γ n
an−1,n−1,

an,k = 1

2γ k
[k(k + 1)an,k+1 − β

n−1∑
m=k−1

am,k−1], k = n − 1, . . . , 1,

for n = 1, 2, . . . .
Now we introduce for Equation (2.3) the single-layer potential

Un(x) = 1

2π

n∑
m=0

∫
�

qm(y)�n−m(x, y) ds(y), x ∈ R
3 \ � (2.7)

and the double-layer potential

Vn(x) = 1

2π

n∑
m=0

∫
�

qm(y)
∂

∂ν(y)
�n−m(x, y) ds(y), x ∈ R

3 \ � (2.8)
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with continuous densities qn for n = 0, 1, 2, . . . and the outward unit normal ν to the boundary
�. From (2.6) we see that our singular solutions have the form

�n(x, y) = 1

|x − y| + �̃n(x, y)

with continuous functions �̃. Then the potentials (2.7) and (2.8) have regular properties anal-
ogous to potentials of the Laplace equation [14, Chapter 6] and we have the following theorem:

Theorem 2.2 The single-layer potential Un given by (2.7) solves the sequence of boundary-
value problems (1.1)–(1.4) provided the densities solve a sequence of integral equations of the
first kind:

1

2π

∫
�

qn(y)�0(x, y) ds(y) = fn(x) − 1

2π

n−1∑
m=0

∫
�

qm(y)�n−m(x, y) ds(y), x ∈ �, (2.9)

for n = 0, 1, 2, . . . . The double-layer potential Vn given by (2.8) solves the sequence of
boundary-value problems (1.1)–(1.2) provided the densities solve a sequence of integral equa-
tions of the second kind:

qn(x) + 1

2π

∫
�

qn(y)
∂

∂ν(y)
�0(x, y) ds(y)

= fn(x) −
n−1∑
m=0

qm(x) − 1

2π

n−1∑
m=0

∫
�

qm(y)
∂

∂ν(y)
�n−m(x, y) ds(y), x ∈ �,

(2.10)

for n = 0, 1, 2, . . . .

3. Numerical solution of the integral equations

In this section we focus our attention only on the sequence of integral equations of the first
kind (2.9). The main reason for this is the possibility of also using these results in the case of
an open boundary.

3.1. REDUCTION TO ONE-DIMENSIONAL EQUATIONS

Let � be a toroidal surface, i.e. it is formed by rotation of some curve # around the axis
Oz and the boundary functions fn are axially symmetric. Then we can introduce cylindrical
coordinates (r, φ, z). Let the boundary curve # be given by

# = {x(s) = (r(s), z(s)) : 0 ≤ s ≤ 2π},
where r(s) > 0 for all s and x : IR → IR2 is 2π–periodic with |x′(s)| > 0 for all s, in such a
way that the orientation of # is counter-clockwise. Clearly, the torus surface � is given by

� = {x(s, ϕ) = (r(s) cos ϕ, r(s) sin ϕ, z(s)) : 0 ≤ s, ϕ ≤ 2π}.
Let boundary functions fn also have rotational symmetry. Then we can transform the integral
equations (2.9) into the following parametric form:
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1

2π

∫ 2π

0
ψn(σ )H0(s, σ ) dσ = gn(s) − 1

2π

n−1∑
m=0

∫ 2π

0
ψm(σ )Hn−m(s, σ ) dσ,

where we have set

ψn(s) = |x′(s)| qn(x(s)), gn(s) = fn(x(s))

and where the kernels are given by

Hn(s, σ ) = r(σ )�̂n(x(s), x(σ ))

for s �= σ and n = 0, 1, . . . . Here we introduce singular solutions for an axially symmetric
case as

�̂n(x(s), x(σ )) =
∫ 2π

0
�n(R(s, σ, ϕ)) dϕ, (3.1)

with

R(s, σ, ϕ) = ([r(s)]2 − 2r(s)r(σ ) cos ϕ + [r(σ )]2 + [z(s) − z(σ )]2)
1
2 .

Equation (3.1) and a Taylor expansion for the exponential function yield the representation

�̂n(x(s), x(σ )) =
∞∑
k=0

αknIk(s, σ ),

where

αkn =




n∑
j=0

an,n−j

(−γ )k−n+j

(k − n + j)! , k ≥ n,

k∑
j=0

an,k−j

(−γ )j

(j)! , k < n

and

In(s, σ ) =
∫ 2π

0
[R(s, σ, ϕ)]n−1 dϕ, n = 0, 1, . . . . (3.2)

In [16] it is shown that the functions In satisfy the recurrence relations

In+2 = pIn − qJn, (n + 3)Jn+2 = (n + 1)(pJn − qIn). (3.3)

Here we have the set p(s, σ ) = [r(s)]2 + [r(σ )]2 + [z(s) − z(σ )]2, q(s, σ ) = 2r(s)r(σ ) and

Jn(s, σ ) =
∫ 2π

0
cos ϕ[R(s, σ, ϕ)]n−1dϕ, n = 0, 1, . . . (3.4)

From (3.2), (3.1) and (3.3) it follows that it is necessary to distinguish the cases of even and
odd indices n. Thus, for the odd case we use the formulas (3.3) with starting values I1 = 2π
and J1 = 0. For n even we start in (3.3) with the following terms

I0 = 4

(p + q)
1
2

K(k) and J0 = 4

q(p + q)
1
2

[
pK(k) − (q + p)E(k)

]
,
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where K and E denote complete elliptic integrals [15] and k2 = 2q
p+q

. Clearly, then for even n

we have the relations

In = IE
n E(k) + IK

n K(k) and Jn = JE
n E(k) + JK

n K(k),

where IE
n , IK

n , JE
n and JK

n satisfy (3.3) with IE
0 = 0, IK

0 = 4(p+q)− 1
2 , J E

0 = −4q−1(p+q)
1
2

and JK
0 = 4p q−1(p + q)−

1
2 .

As a result we rewrite the functions �̂n in the form

�̂n(x(s), x(σ )) = QE
n (x(s), x(σ ))E(k) + QK

n (x(s), x(σ ))K(k) + Qn(x(s), x(σ ))

with

Q8
n(x(s), x(σ )) =

∞∑
k=0

α2k,nI
8
2k(s, σ ), for 8 = E,K (3.5)

and

Qn(x(s), x(σ )) =
∞∑

k=0

α2k+1,nI2k+1(s, σ ). (3.6)

Now we use the following representation for elliptic integrals [15]

E(k) = E1(η) log
1

η
+ E2(η) and K(k) = K1(η) log

1

η
+ K2(η).

Here η = 1 − k2 and the functions K8 and E8, 8 = 1, 2 have a power-series representation.
But as these series are slowly convergent for some parameters k, we use for these functions
the following polynomial Chebyshev approximations [17]

Ki(η) =
NK∑
m=0

am,iη
m and Ei(η) =

NE∑
m=0

bm,iη
m, i = 1, 2,

where am,i and bm,i are the given coefficients. Note that for NK = 10 and NE = 10 the
maximum absolute error for these approaches is of the order of 10−18.

Therefore we can finally split the singular functions (3.1) in the form

�̂n(x(s), x(σ )) = =1
n(x(s), x(σ )) log

1

η
+ =2

n(x(s), x(σ )), (3.7)

where

=1
n(x(s), x(σ )) = QE

n (x(s), x(σ ))E1(η) + QK
n (x(s), x(σ ))K1(η)

and

=2
n(x(s), x(σ )) = QE

n (x(s), x(σ ))E2(η) + QK
n (x(s), x(σ ))K2(η) + Qn(x(s), x(σ )).

As can be seen from (3.5) and (3.6), the functions =k
n , k = 1, 2 are smooth for all s, σ ∈

[0, 2π ].
Now from the representation (3.7) we can write the kernels Hn in the form

Hn(s, σ ) = log

(
4

e
sin2 s − σ

2

)
H 1

n (s, σ ) + H 2
n (s, σ ),
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where

H 1
n (s, σ ) = r(σ )=1

n(x(s), x(σ ))

and

H 2
n (s, σ ) = Hn(s, σ ) − log

(
4

e
sin2 s − σ

2

)
H 1

n (s, σ )

for s �= σ . The evaluation of the diagonal terms for H 1
n is not problematic and the diagonal

terms of H 2
n are given as

H 2
n (s, s) = H 1

n (s, s) log
4r2(s)

e|x′(s)|2 + r(s)=2
n(x(s), x(s))

for n = 0, 1, . . . . Thus we have arrived at a sequence of integral equations of the first kind
with logarithmic singularity

1

2π

∫ 2π

0

[
log

(
4

e
sin2 s − σ

2

)
H 1

0 (s, σ ) + H 2
0 (s, σ )

]
ψn(σ ) dσ = Gn(s) (3.8)

for 0 ≤ s ≤ 2π with right-hand sides

Gn(s) = gn(s) − 1

2π

n−1∑
m=0

∫ 2π

0

[
log

(
4

e
sin2 s − σ

2

)
H 1

n−m(s, σ ) + H 2
n−m(s, σ )

]
ψm(σ ) dσ.

(3.9)

The uniqueness of the solutions of (3.8) is deduced from the uniqueness of the solutions
of the boundary-value problems (2.3)–(2.5). By incomplete transformation we can reduce the
integral equations (3.8) to a sequence of operator equations of the second kind. Then existence
of a solution ψn in Hölder space C0,α[0, 2π ] for any non-homogeneity gn ∈ C1,α[0, 2π ]
follows from the Riesz-Schauder theory for operator equations of the second kind with a
compact operator [14, Chapter 3]. Thus we have the following result:

Theorem 3.1 For any gn in C1,α[0, 2π ] the integral equations (3.8) have unique solutions ψn

in C0,α[0, 2π ]. Furthermore, the solutions depend continuously on gn.

3.2. TRIGONOMETRIC QUADRATURE METHOD

For the numerical solution of our integral equations we combine the quadrature and colloca-
tion methods based on trigonometric interpolation with equidistant grid points. This method
was suggested and analyzed in [2], including an error and convergence analysis. Now, using
the trigonometric quadrature formulas for 2π -periodic functions [14, Chapter 12]

1

2π

∫ 2π

0
f (s) ds ≈ 1

2M

2M−1∑
i=0

f (si), si = iπ

M
, i = 0, 1 . . . , 2M − 1, M ∈ N

and

1

2π

∫ 2π

0
f (σ ) log

(
4

e
sin2 sj − σ

2

)
dσ ≈

2M−1∑
k=0

R|k−j | f (sk)

with the weights
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Rj = − 1

2M

{
1 + 2

M−1∑
m=1

1

m
cos msj + (−1)j

M

}

together with the collocation at the nodal points, we arrive at the following sequence of
systems of linear equations

2M−1∑
k=0

ψn,M(sk)

{
R|j−k|H 1

0 (sj , sk) + 1

2M
H 2

0 (sj , sk)

}
= Gn,M(sj ), j = 0, . . . , 2M − 1

with right-hand sides corresponding to (3.9).
The convergence and error analysis of this quadrature method were established in [2] on

the basis of collective compact operator theory. We note only that the numerical method in [2]
requires the implementation of the factor sin2 s−σ

2 in the kernel H 1
0 . As is shown in [18], this

decomposition is not necessary for performing the error analysis. Thus from [2, 18] we have
the following result:

Theorem 3.2 Let # ∈ C∞ and g ∈ Cp+1[0, 2π ], p ∈ IN. Then the numerical solutions ψn,M

converge with respect to the Hölder norm to exact solutions ψn for M → ∞ and for every
n = 0, 1, . . . , N and the following error estimates hold

||ψn,M − ψn||0,α ≤ CnM
−p.

It is clear that the numerical solution of the initial-boundary-value problem (1.1)–(1.4) has
the form

uN,M(x, t) = κ

M

N∑
n=0

n∑
m=0

2M−1∑
j=0

ψm,M(sj )r(sj )�̂n−m(x, x(sj ))Ln(κt).

3.3. SMOOTH OPEN-BOUNDARY CASE

Now we assume that the toroidal surface � is formed by rotation of the smooth open curve #

with parametric representation

# = {x(s) = (r(s), z(s)) : −1 ≤ s ≤ 1},
where r(s) > 0 and |x′(s)| > 0 for all s and with end points x−1 = x(−1) and x1 = x(1).
Note that in this case by similar arguments as in [4] we do not assume any additional edge
conditions for the solutions (2.3)–(2.5). Then the simple-layer-potential approach gives us the
sequence of integral equations (2.9) and we obtain the following after parametrization

1

2π

∫ 1

−1
µn(σ )H0(s, σ )dσ = gn(s) − 1

2π

n−1∑
m=0

∫ 1

−1
µm(σ )Hn−m(s, σ )dσ, (3.10)

where

µn(s) = |x′(s)| qn(x(s)), gn(s) = fn(x(s)), Hn(s, σ ) = r(σ )�̂n(x(s), x(σ ))

for n = 0, 1, . . . , N . For the numerical solution of these integral equations we need to take
into account the singularities in the densities of the form



The numerical solution of the Dirichlet initial boundary-value problem 83

µn(s) = µ̃n(s)√
1 − s2

for − 1 < s < 1 and µ̃n ∈ C[−1, 1].

One of the various possibilities for the consideration of these root singularities is the variable
substitution method. We use the cos-substitution according to [4, 19]. Let in (3.10) s = cos ζ

and σ = cos C. Then the simple transformations as in [4] give us from (3.10) the integral
equations

1

2π

∫ 2π

0
ωn(C)H0(ζ, C)dC = hn(ζ ) − 1

2π

n−1∑
m=0

∫ 2π

0
ωm(C)Hn−m(ζ, C)dC, (3.11)

where ωn(ζ ) = µ̃n(cos ζ ), hn(ζ ) = 2gn(cos ζ ) and Hn(ζ, C) = Hn(cos ζ, cos C). Similarly
as in the closed-boundary case we transform the kernels into the form

Hn(ζ, C) = H1
n(ζ, C) log

(
4

e
sin2 ζ − C

2

)
+ H2

n(ζ, C)

with corresponding smooth functions H1
n and H2

n. The well-posedness of Equations (3.11) in
Hölder space of even functions can be shown as before (for details see [4]). The numerical
solution of integral equations (3.11) and error and convergence analysis is analogous to Sec-
tion 3.2. We note that the numerical values of the even densities are computed only on the
interval [0, π ]. Then the sequence of the linear system has, in this case, the form

ωn,M(0)

[
RiH1

0(si, 0) + 1

4M
H2

0(si, 0)

]
+ ωn,M(π)

[
RM−iH1

0(si, π) + 1

4M
H2

0(si, π)

]
+

M−1∑
j=1

ωn,M(si)

[
R|i−j |H1

0(si, sj ) + Ri+j H1
0(si, s2M−j ) + 1

2M
H2

0(si, sj )

]
= Gn(sj )

with j = 0, . . . ,M and corresponding right sides Gn.

4. Numerical experiments

4.1. CLOSED BOUNDARY

Assume that the torus surface �1 is formed by rotation of the curve #1 (see Figures 1 and 2)
with parametric representation

#1 = {x(s) = (0·2 cos s + 1, 0·4 sin s − 0·3 sin2 s), 0 ≤ s ≤ 2π}
and the boundary function is given by

F1(x, t) = 4t2e−4t+2.

The numerical solution of the initial boundary-value-problem (1.1)–(1.4) with c = 1 in two
spatial points x = (1·5, 0) and x = (1·5, −0·5) and for the time steps t = 0 · 0, 0 · 5, 1 · 5, 2 · 0
is presented in Table 1. Here κ = 1 and NE = NK = 10. The table shows the convergence of
the numerical solution by an increase of values of discretization parameters. The fast conver-
gence of the trigonometric quadrature method with respect to the number 2M of quadrature
points is clearly exhibited. Some numerical results with discretization parameters M = 16
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Figure 1. Torus surface �1

Figure 2. Rotation curve #1

and N = 30 are presented in Figures 3 and 4. These figures show that our method works for
any spatial observation points and for the selected time interval.

4.2. OPEN BOUNDARY

Now we consider the open torus surface �2 that is formed by rotation of the half-circle with
parametric representation

Figure 3. Numerical example 1: z = 0·2, r = 0·2(0·1)2·2, t = 0(0·15)3
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Figure 4. Numerical example 1: r = 1·5, z = −1(0·1)1, t = 0(0·15)3

Table 1. Numerical results for the first example

x = (1·5, 0·0) x = (1·5, −0·5)

t M N = 30 N = 35 N = 40 N = 30 N = 35 N = 40

0·0 8 0·008039 0·012936 0·012483 0·011801 0·014992 0·013517

16 0·008036 0·012934 0·012482 0·011802 0·014993 0·013517

32 0·008036 0·012934 0·012482 0·011802 0·014993 0·013517

0·5 8 0·474325 0·475251 0·475314 0·439599 0·440236 0·440330

16 0·474341 0·475268 0·475331 0·439593 0·440229 0·440323

32 0·474341 0·475268 0·475331 0·439593 0·440229 0·440323

1·0 8 0·395238 0·394595 0·394445 0·385341 0·384868 0·384518

16 0·395239 0·394595 0·394446 0·385340 0·384867 0·384517

32 0·395239 0·394595 0·394446 0·385340 0·384867 0·384517

1·5 8 0·177325 0·179037 0·179178 0·178542 0·179714 0·179937

16 0·177323 0·179036 0·179176 0·178543 0·179715 0·179938

32 0·177323 0·179036 0·179176 0·178543 0·179715 0·179938

2·0 8 0·080334 0·077963 0·077967 0·082030 0·080503 0·080799

16 0·080332 0·077961 0·077966 0·082031 0·080503 0·080800

32 0·080332 0·077961 0·077966 0·082031 0·080503 0·080800

#2 = {x(ζ ) = (1 + cos
π

2
ζ, sin

π

2
ζ ), −1 ≤ ζ ≤ 1}.

Again, the boundary function depends only on the time and has the following form

F2(x, t) = B3

(
4t − 6

3

)
,

where B3 is the standard cubic B-spline. In the Figures 5 and 6 the numerical results of the
initial-boundary-value problem (1.1)–(1.4) with these data are presented. All parameters of
the method are used as in the previous examples. These results demonstrate the effectiveness
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Figure 5. Numerical example 2: z = 1·2, r =0·2(0·1)2·2, t = 0(0·2)4

Figure 6. Numerical example 2: r = 0·5, z = −1(0·1)1, t = 0(0·2)4

of our numerical method for the solution of time-dependent problems in unbounded domains
with boundary conditions imposed on open axially symmetric surfaces.

5. Concluding remarks

The numerical solution of the time-dependent problem for the heat equation with a Dirich-
let boundary condition on a toroidal surface has been considered. The proposed numerical
method is based on the semi-discretization of the given problem by a Laguerre transformation
with respect to the time variable and on the reduction of the pertinent steady boundary-value
problems to boundary-integral equations on a surface. The axial symmetry of the boundary
surface and some restrictions for the boundary function allowed us to reduce the dimension
of the integral equations to one. As a result, a sequence of integral equations on the curve
of a section of the torus with the logarithmic singularity in the kernels is derived. A full
discretization was realized by a discrete trigonometrical collocation method. Here the quadra-
tures that are constructed on the basis of trigonometrical interpolation for the smooth part
of the integrand were used. In the case of an open smooth axially symmetric surface the
singularities in the densities of the integral equations were taken into account by use of a
cos-substitution. Then, integral equations similar to those of the closed-boundary case were
obtained. Numerical experiments demonstrated the convergence of the proposed method.
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Future investigations into this approach can be interesting for the following reasons. It is
important to make a complete convergence and error analysis of the proposed method. This
method works if the differential equation and initial condition are homogeneous. It is neces-
sary to extend it to more general cases. One way would be to use a special approximation for
the non-homogeneity and to construct particular solutions of the stationary differential equa-
tions [20]. In Section 2 a combination of the Laguerre transformation and the integral-equation
method for a three-dimensional spatial case was developed. Clearly, the full discretization of
two-dimensional integral equations requires other methods than those used for a torus. This
can be realized by the boundary-element method [1] or by a spectral collocation method [7].
In future research we intend to consider these problems.
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